Analisis Prediksi pada variabel Temperatur dan Kelembapan di sensor IoT menggunakan metode LSTM
Sari
Teks Lengkap:
PDFReferensi
V. Ricquebourg, D. Menga, D. Durand, B. Marhic, L. Delahoche, and C. Logé, “The smart home concept: Our immediate future,” 2006 1st IEEE Int. Conf. E-Learning Ind. Electron. ICELIE, pp. 23–28, 2006.
TechTarget, “Smart Home / Building.” [Online]. Available: https://internetofthingsagenda.techtarget.com/definition/smart-home-or-building.
B. Ray, “NB-IoT vs. LoRa vs. Sigfox,” Link Labs, 2018. [Online]. Available: https://www.link-labs.com/blog/nb-iot-vs-lora-vs-sigfox.
M. I. Habibie and A. Arifin, “The prediction of mobile data traffic based on the ARIMA model and a disruptive formula in Industry 4.0,” Teknomika, 2019.
J. C. Chambers, S. K. Mullick, and D. D. Smith, “How to choose the right forecasting technique,” Harv. Bus. Rev., vol. 49, no. 4, pp. 45–70, 1971.
M. Venkatachalam, “Recurrent Neural Networks - Towards Data Science,” March 1, 2019. [Online]. Available: https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce. [Accessed: 23-Feb-2020].
Ajie, “Mengukur Suhu dan Kelembapan dengan menggunakan Arduino,” 2016. [Online]. Available: http://saptaji.com/2016/08/10/mengukur-suhu-dan-kelembaban-udara-dengan-sensor-dht11-dan-arduino/.
A. Gad, “How Many Hidden Layers/Neurons to Use in Artificial Neural Networks?,” Towards Data Science, 2018. [Online]. Available: https://towardsdatascience.com/beginners-ask-how-many-hidden-layers-neurons-to-use-in-artificial-neural-networks-51466afa0d3e. [Accessed: 23-Feb-2020].
P. Gadosey, “A beginner’s guide to NumPy with Sigmoid, ReLu and Softmax activation functions,” Medium, 2019. [Online]. Available: https://medium.com/ai3-theory-practice-business/a-beginners-guide-to-numpy-with-sigmoid-relu-and-softmax-activation-functions-25b840a9a272. [Accessed: 23-Feb-2020].
Refbacks
- Saat ini tidak ada refbacks.